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SUMMARY 

An investigation wa6 conducted in the Amee 12-foot pressure wind 
tunnel to determine the effect of an operating propeller on the aerody- 
namic characteristics of a model of a vertical-rising airplane having an 
unswept wing with an aspect ratio of 3. Wind-tunnel tests were conducted 
through a range of power coefficiente at angles of attack up to 16O and 
at Mach numbers from 0.50 to 0.92. The Reynolds numberwaa constant at 
1.7 million. 

Lift, longitudinal force, pitch, and roll characteristics, determined 
w3th and tithout power, are presented for the complete model and for 
various combinations of model components. Result8 of an inveetigation to 
determine the characterietice of the dual-rotating propeller ueed on the 
model are given also. 

INTRODUCTION 

The large t&-u&i available with turbine-propeller propulaion systems 
has made possible the construction of fighter-type airplanes capable of 
vertical take-off and relatively high .subsonic forward speeds. The bves- 
tigation discussed herein w&a made of a model of such an airplane. The 
airplane configuration was aerodynamically conventional with the exception 
of an interdigitated tail on which all the movable control surfaces were 
located. Longitudinal, lateral, and directional control were achieved 
by appropriate combinations of movements of these four control surfaces. 

Tests were conducted through an angle-of-attack~range at several 
power coefficients (incluafng propeller windmilling) to determine the 
effect of the operating propeller on the.LLft, drag, and pitching-moment 
characteristics of the model. The effect of windmZ.lling propellers on 
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the effectiveness of the longitudinal and lateral control surfaces was 
also investigated. Data are presented in this. report without analysis 
and they pertain only to model characteristics in near horizontal flight 
attitudes and at comparatively high speeds. 

NOTATION - 

The results of the investigation are presented in the form of 
standard NACA coefficients of forces and moments and are referred to 
the conventional stability axes. The coefficients and symbols used 
are defined as follows: 

lift lift coefficient, e 
ss 

rolling-moment coefficient measured about the center of~gravzl.ty, 
rolling moment 

W 

pitchfng-moment~coefcient measured aboutthe center of gravity, 
pitching moment 

s= 

cp 
P power coefficient, - 

pnsD5 

T thrust coefficient, - 
pn2D4 

CX 

'zd 

b 

b' 

longitudinal-force coefficient, -$ 

propeller-blade-section design lift coefficient 

dQ3 aPan, ft 

propeller-blade width, ft 

C 

5 

C.G. 

wing chord, ft 

mean aerodynsmk wing chord, 

center-of-gravity location 
(See fig. 1.) 

sy2 c%y 

r,"" c dy' 
ft 

D propeller diameter, ft . 

h maximum thickness of propeller-blade set tion, ft 

- 

l 

.- 

. 

r 
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J 

. 
M 

n 

P 

R 

r 

9 

S 

T 

.v 

1 X 

0 Y 

a 

B 

8 

propeller advance4iameter ratio, -& 

free-stream Mach number 

propeller rotational speed, r-pa 

model-motor shaft power, f-t-Xb/sec 

propeller-tip radius, ft 

propeller-blade-section radius, ft 

free-stream dynamic pressure, $ PV2, lb/sq ft 

w-ing area, sq ft 

propeller thrust, lb 

free-stream velocfty, ft/sec 

longitudinsl force, parallel to stream and positive in a thrust 
direction, lb 

lateral distance from plane of symmetry, ft 

angle of attach, deg 

propeller-blade angle, deg 

control-surface deflection with respect to a section of the fixed 
surface taken perpendicular to the hinge line of the movable 
surface, deg 

aileron deflection, positive when lift is decreased on the right 
tail surface and increased on the left tail surface. (The con- 
trol surfaces were deflected differentially to the same angular 
magnitude.) 

8e 

rl 

n 

elevator deflection, positfve to increase lift on tail 

%J propeller efficiency, - 
CP 

free-stream mass densitv of air. sluas/cu ft I- I Y I 
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MODELANDAPPARKMJS 

The investigation was conducted in the Ames 12-foot pressure wind 
tunnel using a l/10-scale.model of the Lockheed m-1 airplane supplied 
by the Lockheed Aircraft Corporation. The model had an unswept wing 
with an aspect ratio of 3.07 and a taper ratio of 0.327. The wing 
employed HACA 65A206 sections. The prototype-airplane contours were 
slfghtly modified at the base of the model fuselage to accommodate a 
sting-type model support. Figure 1 and table I present dimensions and 
details of the model and figure 2 shows the model mounted in the tunnel 
test sectfon. _ 

-. - 

The six-blade dual-rotating 

activity factor per blade of 140 

and was designed by the Curtiss-Wright Corporation spec-ificall$ for 
vertical-take-off airplanes. Figure 3 presents propeller plan-form and 
blade-form curves. 

The model, including the propeller, was constructed of aluminum 
alloy with the exception of the fuselage air-intake ducts which were 
sealed off.and faired with a lead alloy. Model control-surface deflec- 
tions were amated with interchangeable control surfaces-machined to 
predetermined angles. The model-propeller blades could be adjusted 
manually to any desired angle. The surfaces of the wing, body, and tail 
were filled, painted, and polished smooth. 

-. 

* 

- . 
- 
-. 

Model power was supplied by two water-cooled induction motors 
mounted in tandem in the model fuselage. Each motor developed a maximum 
of 36 horsepower at 12,000 revolutions per minute. A continuous speed 
control for the two motors was obtained by the use of a variable- 
frequency power supply--common to both motors. Each component of the 
dual-rotating propeller was directly driven by one of the model motors. 
Propeller speed was measured bymesns of a tachometer on the front motor 
(rear propeller) used in conjuncti.on with an electronlc.frequency- 
measuring device. It was .assumed that both motors turned at the same 
speed. 

A sting-type model-support system was used with a wire-resistance 
strain-gage balance of the flexure-pivot type enclosed in the model 
fuselage to measure lift, longitudinal force, side force, pitching 
moment, rolling moment, and yawing moment. Angle,of attack was measured 
visually by means of a cathetometer. 
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TESTSAND PROCXDURFS 

Test Ranges 

5 

The characteristics of the model were investigated over a Mach 
number range of 0.50 to 0.92; Reynolds number was constant at 1.7 million. 
Several power conditions were investigated at various propeller-blade 
angles through an angle-of-attack range of -4O to +8O at each Mach number. 

A summary of the power-on tests for several model configurations is 
presented in table II. The power coefficFents could not be exactly 
duplicated for the different model configurations as the tunnel tempera- 
tures and model-motor efficiencies could not be accurately predetermined. 
The power-coefficient values presented in table II are the averages of 
the values measured through sn.angle-of-attack range. 

Propeller Calibration 

Propeller calibrations were made by testing the propeller in com- 
bination with the model fuselage less the pilot's cab (fig. 4). Forces 
were measured through Mach number, angle-of-attack, model power, and 
propeller-blade-angle ranges which included the test ranges of the 
power-on model investigation. The'progeller thrust coefficient was deter- 
mined from the following relation: 

where 

Cxp = Qpropeller operating - CXpropeller off 

The shaft power of the model motors was determined by measuring the input 
power to the motors and applying-corrections for the motor losses. Inter- 
ference effects between the body and the propeller were neglected and the 
efficiencies presented are the propulsive efficiencies of the propeller- 
body combiaation. 
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Tunnel-Wall Interference c 

Corrections for the induced effects of the tunnel walls resulting 
from lift on the model were made according to the methods of reference 1. 
The corrections added to the angle of attack and longitudinal-force 
coefficient were as follows: 

A4 = 0.2078 cL 

acx= -0.00363 cL2 

No corrections were made to the pitching-moment coefficients as calcu- 
lations by the method of reference.1 indicated the corrections to be 
negligible. .- II 

The effects of wind-tunnel-wall constraint on the model-propeller 
slipstream were evaluated by the method of references 2 and 3. These 
effects were indicated to be negligible. 

The effects of constriction of the flow by the tunnel walls were 
evaluated by the method of reference 4. The following table shows the 
magnitude of the corrections: 

Corrected .Uncorrected Corrected 
Mach number Mach number %ncorrected 

0.500 0.500 1.001 
.700 :;;2 1.002 
.800 1.003 
.850 -847 l.OcA 
. go0 ,894 1.006 
.g20 .g12 1.008 

Sting Interference 

In order to correct partially the longitudinal-force data for sting 
interference, the pressure was measured at the base of the model fuse- 
lage and the drag data-were adjusted to correspond to a base pressure 
equal to the static pressure-of the free stream. 

- *-- 

. 

-L 
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FEXXILTS 

Figures 5 through 10 show the characteristics of the dual-rotating 
propeller. Because of the small thrust available at Mach numbers of 
0.90 and 0.92, only one power condition in addition to propeller wind- 
mU.lFng was investigated at these Mach numbers. The fairing of propeller- 
performance curves for these conditions (indicated by broken ties) is 
based on propeller-performance data obtained at lower Mach numbers. 
Figures IL through 16 show the effect of power on the aeroaynanric char- 
acteristics of the model fuselage. The effects of power on the aerody- 
namic characteristics of the complete model are shown in figures 17 
through 22, and power effects on the aerodynamdc characteristics of the 
model with the tail removed are presented ti figure 23. Figure 24 shows 
longitudinal control-effectiveness data for several elevator deflections 
and one combination of elevator and aileron deflections. RoU character- 
istics of the model are presented in figure 25 for one aileron deflection 
and for a combination of aileron and elevator deflections. Figure 26 
presents aercdynamic characteristics for several combinations of model 
components with the propeller removd, and figure 27 shows the aerody- 
namic characteristics for the body alone, the body and cab, and the body 
and tail. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., May 6, 1952 
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TABI I.- GECTVETRIC CHARACTERISTICS OY‘TBE MODEL 

wing 
Span,in. ........ ..- ............... 33.0; 
Rootchord,in. ................. ..- ... 16.20 
Tip chord, in. . 
Mean aerodynamic ih&d, in. .................................. 

5.30 
11.65 

Aspect ratio. ........................ 3.07 
Taper ratio .. :-. I- ; ......... : ........ 
Area,sqft ........................ ";'~~ . 
Dihedral of wing reference plane through &O-percent chord, 

deg ........................... -5.0 
Incidence, root and tip, deg ............... 
Length, wing-tip armament pods, in, ............ 16% 
Diameter, wing-tip armament pods, in. ........... 1.80 
Airfoil section, root and tip ...... -. ...... NACA 6511206 

Tail 
Span.in. ........... ; ............. 14.70 
Root chord, in. . ; .................... 8.50 
Tipchord.in. ...................... 3.20 
Mean aerodynamic chord, in. ................ 6.25 
Aspect ratio .... -. ........ ; -. .......... 3*55- 
Taper ratio ..... :. ......... ; ........ 0.376 
Total area, 4 surfaces, sq ft ............... 1.69 
Total area, 4 fixed surfaces, sq ft ......... -. .. ‘1.36 
Total area, bmovable surfaces, sq ft ........... 0.32 
Incidence (angle in vertical plane) between fuselage 

reference line and intersection of all chord planes, deg . -4.0 
Sweepback angle, quarter chord, deg .... : ....... 30.0 
Airfoil section, root and tip ... ; ........ NACA 65~007 

l = 

l 
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Tunnel 
bwb density 

no. altttuae 
ft 

0.50 22,100 
.50 22,lao 
.50 22,100 
.50 z2,loo 

.-i-o 31,500 
l 70 31,500 
-70 31,500 
l 70 31,500 
-70 31,500 

.80 35,100 

:g ;;,tp; 2 

-85 36,500 

:g ;f5~:~ > 

:g ~;~~Fl > 

:g ;2~~ , 
Equivalent f'ul 

Ilade angle, coIYflgLlratlon 
aeg Equivalent Fig. 

it 0.75 r/R cP,v fuU-scale no, *av 
&a. hpl 

z 0.84 -56 zg 

;; 1.25 -94 1650 2700 17(b) 1.02 

co: 

- - 
- - 
25 
- 3 

;; $2 4100 3100 18(a) 18(b) - -89 - 
E a79 2750 

1.32 r50 
WE/ l 8J3 

60 1.13 2150 18(c) : : 

- - m I---I --I --” 

mm- I-,-I -,I -mm 

- " 
25 - - 
- - 
- m 

;; .‘@ 
22 

3150 3350 lpa) 19 I b) -- .81. 
55 2800 19(b) -73 

2: 1:g 3150 3700 N4 -73 

60 -97 2700 

I m 
25 - - 

I I I 

4e0 23(e) -63 4050 - - - l---l --I --- 

25 
- - 
- - 

G- - - 

4150 123(f)l 053) 3500 
I 

_ . _ -... _ _. 

25 
3 c 
7 l- Bcale horsepower ms c!alcLiLateCl Tar afmuned alq.Lme altltuclea CorreepoMlng To 

TABLE II.- SUMMARY OF THE MODEL POWEFi-ON TESTS 

Fbpeller 1 Complete model I Ml-off model 1 Simulatea yaw -I 

the tur!nel-density altitudes and a model scale of l/10. 
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Figure 2.- Themodelhthe Ames IQ-foot pressure whdtunuel.. 
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Figure 4.- !Che model propeller in the Ames l2-foot pressure wind tunnel. 
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